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The Effect  of  an External  Field on an 
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We consider the effects of an external potential -hY~f(S,.)  with h>0,  f 
increasing, on the equilibrium state of a system with a Hamiltonian of the form 

H~ = ~ ~(S.,.-S.,),S.,ER, xcZa, d>~3 
<,r) 

q5 even and convex, e.g., qh(t)_ 1/2t 2 and f ( t ) =  sign t. This can be thought of as 
a model of the interactions between a random interface {S.,} and a "soft" wall. 
We show that the random surface is (entropically) repelled to infinity for all 
h>0,  i.e., with probability one, S.,)K, for any K~R. 

KEY WORDS:  Random interfaces; soft wall; entropic repulsion. 

1. I N T R O D U C T I O N  

W e  cons ide r  the  s imple  cub ic  la t t ice  Z J in d d imens ions ,  to each  of  w h o s e  

sites x ~ Z J we ass ign a spin  va r i ab le  wi th  va lues  Sx e R. Le t  A, V,... c Z d 

d e n o t e  finite cubes  wi th  cen te r  at  the  o r ig in  of  the  lat t ice.  A c o n f i g u r a t i o n  

S v =  { S ~ ; x e  V} in V is an  e l e m e n t  of  R Ivl, where  Irl is the  n u m b e r  of  
sites in V. 

T h e  ene rgy  for c o n f i g u r a t i o n s  in V wi th  a g iven  specif ied b o u n d a r y  

c o n d i t i o n  S,_ = a if x r V is a s s u m e d  to h a v e  the  fo rm 

H~ a) = y~ q~(Sx-S,,) 
< xy > 
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The sum is over all pairs of nearest neighbors x, y at least one of which is 
in the region V. The function 45 is even and satisfies the condition 

f e x p [ - ~ ( t ) ]  d t<  oo, Vc~>0 

The joint distribution of the spins in the region V is given by the nor- 
malized Gibbs measure 

0 _ _  - ]  dlav . , -  [Zv,~] e x p [ -  H~ a)]  l-I dSx 
V 

Zv. ,  is the partition function and dSx is the usual Lebesgue measure on R. 
The inverse temperature is set equal to one. We will write 

( >~ 4,~ 

for the expectation with respect to this measure. 
The thermodynamic limit of the free energy 

1 
f v = ,-- / -Z~, log Zv, ,  --* f 

always exists c~ and is independent of a. We will assume that an infinite- 
volume equilibrium state can be defined. This is always true for d~> 3 when 
qs( t ) = c~t2 + v( t), c~ > O, v convex; see Section 3. The limiting measure will 
of course depend (in a trivial way) on a. For  the case q~(t) = �89 2, it is the 
massless harmonic crystal: the Gaussian field {Sx; x e Z  J} specified by its 
covariance - A  ~ (A is the lattice Laplacian) and its mean a. Here ( . ) o  
will denote expectation with respect to the infinite-volume measure, i.e., 

. 0 _ _  0 ) ~ -  lim (")v,~ 
V 

We now introduce Ising-like variables 

~ = s i g n S x = l  if S~>~0 

= - 1  if S ~ < 0  

and consider the probability distribution of the Ising variables {ox; x e Z a} 
induced by the Gibbs field { S x ; x e Z  a) described above. In this way we 
obtain a degraded image of the original random field, i.e., the con- 
figurations {~x; x e V} reveal only whether the corresponding spins Sx are 
above or below the zero level. We call flu the induced measure. 
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One of the motivations to study the induced system is that situations 
of this type may arise naturally in some image reconstruction problems./a~ 
We note that the state ft. will not (as we shall see) be Gibbsian with any 
finite-range interaction. This gives our induced system some of the charac- 
teristics of a nonequilibrium state, whose study is of great interest, t31 An 
additional feature of this induced system inherited from the original Gibbs 
system is the strong (critical) correlations among the {a.}. For the har- 
monic case an easy computation gives 

( ~ o ; ~ x F ~  d-2, d > 3  

so this is an explicitly treatable model of Ising spins with nonintegrable 
power law decay of the truncated pair correlation. 

In this paper we will not go into a more detailed analysis of this har- 
monic Ising model (HIM as we like to call it), but rather investigate the 
effects on fi~ of a perturbation by an external magnetic field. Let 

Hh'a(Sv;a)=H~ h > 0 ,  A < V  
A 

and let 

d# h'A= EZv.,(h, A)] -1 e x p [ -  Hh'A(Sv; a)] 1~ dS~ 
V,a 

V 

be the perturbed measure with expectations 

<'\h'a--f'd~/"A=/v,~,-- v,. exp hEcr~ 'exp h e a  t 
A / I V , a ~  \ A V,a 

The superscript h, A is a reminder that a magnetic field has been applied 
only to the spins {ax;x  ~ A }. If V= A, we will simply write ( .  h ~ V , a  �9 

This model has some relevance in the statistical mechanics of random 
surfaces. The variables {Sx} may be viewed as describing the height 
of an interface above a zero level. Adding the perturbation is then like 
introducing an interaction of the interface with an external potential. We 
shall call, with a certain abuse of language, any potential of the form 

-h  2 f(Sx) 

w i t h f a n y  (nonconstant) nondecreasing function, a (soft) wall. The charac- 
teristics of the wall are described by h and the function f. Our main result is 
then that the interface is repelled to infinity by the wall independent of the 
form of the wall! It would be essentially flat (Sx = a, d >  2) if the wall were 
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absent (h =0) .  Our result may be considered as a generalization of the 
work by Bricmont et al. ~4) These authors considered the case where the 
external potential corresponds to a rigid wall 

f ( t )  = 0 if t>~0 

= - o o  if t < 0  

This is the hT oo limit of the c a s e f ( t ) =  sign t - !  or the c~" oo limit of the 
case f ( t ) =  - e x p ( - : ~ t )  (see also remark 3.2). The surface is constrained in 
this case to fluctuate above the rigid wall and Bricmont e t a / .  (4) showed 
that it escapes to infinity. 

The underlying mechanism in our case is the same as in Ref. 4. The 
surface wants to be "above the wall" (energy requirement) and wants to 
stay "away from the wall" in order to have more freedom to fluctuate 
(entropic repulsion); cf. discussion in Ref. 4. 

Our arguments center around the invariance of the Hamittonian H ~ 
under a noncompact  continuous symmetry group. The existence of an 
infinite-volume Gibbs state in this case can be expected only for d>>, 3/1"5) 

We show that even in this case any perturbation of the kind described 
above pushes the system to infinity. 

In the proofs frequent use will be made of the F K G  inequalities. In 
order that the measures defined above satisfy the F K G  inequality, it is suf- 
ficient that 45 is convex and smooth enough. 16'7) 

In Section 2 we present our results and proofs. Section 3 is a dis- 
cussion of these results. The nature of the induced state on the fuzzy 
variables {a,.}, a , ,=  sign Sx, is further discussed. Examples are given and 
the assumptions of Section 2 are reviewed. A remark is made about the 
relevance of our results to the Liouville model in field theory. The case 
S,. ~ Z (as in the discrete harmonic crystal or the SOS model) is also dis- 
cussed. 

2. R E S U L T S  A N D  P R O O F S  

We assume for simplicity (see, however, Remark 3.3) that 45 is C 2 and 
of the form 

45(t) = c~t 2 + v(t) ,  c~ > 0 and v convex 

The next lemma gives the difference in free energy between the perturbed 
and the unperturbed system for the case f ( S x ) =  sign Sx = ~x. 
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L e m m a  1 : 

(a) lim log e x p h ~ c r  x = h  
V - ~ 1  V / V,a 

�9 1 t exp  h o (b) llAm~-TlOg ~a~> =h 

Proof: 

exp(hlVI)~> exph a X ~>[exp(h VI)] z(Sx>~O) (1) 
V,a I V.a 

where Z(  ) is the characteristic function of the event .. 
We also have for any k >~ 0 

The last equality reflects the presence of a zero mode, i.e., the interaction is 
invariant (up to a change in the boundary condition) under a uniform shift 
of all the spin values. 

For part (a) of the lemma it is sufficient to show that 

lim ~ 1  log z(IS~l ~<k) 
v IVI . . . _ ,  

= ( 3 )  u ~-[ log z(ISxl<~k)/v, ~ 
and 

sup lim log x(]S~[ ~<k) = 0  (4) 
k V ] - ~  / I/,0 

To prove (3) we write 

(I7 z(IS~l ~< k))~ 

= >O~(kv) 

f /  (k~) <~ Y, d ~ < ~ ' ( S ~  ~ o . - r  (5) 
?~iV - -  k 
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where ( . ) o  (kA) refers to the unperturbed measure with cutoff 
-k<~Sx<~k,  for all x e A  ~ V, and 0iV are the sites in V forming the inner 
boundary. Since ~( t )  is convex and even, crp'(t) is increasing and odd. 
Therefore, the rhs of (5) can be bounded for k >  a by 

I~VI d~ ~ ' ( k - ~ ) =  laVI [~(2k-a)-q~(k)]  
k 

It follows from this bound that (3) is satisfied. 
To prove (4), we observe that for any V' c V such that y e  V' and 

V' \ y  = V", we have 

\ v '  / v,0 

-- I-1 - (z(ISvl > k ) ) ~  (k~,,)] z(Iaxl ~<k) 
/ V,O 

>/r l  - k - ~ ( S ~ ) ~  (kv,)] z(taxl ~<k) 
V,O 

where the equality follows from the general definition and the inequality is 
a Chebyshev inequality. 

Using Brascamp Lieb inequalities, (1'8) it is possible to bound 
2 0 g" ~ '2 \ h a r m  ( S v ) v o  ( k w )  by \~v/~ v.o , where harm refers to the case q~(t)= ~t 2. For  

d~> 3 the latter is uniformly bounded in the volume, so that we have that 
2 0 ( S, .)  vo (kv,,) <<. c. Therefore, 

/ ~ z(IS~l ~<k) >~(1-c/k z ) z(ISxl<.k) 
/ v,0 v,0 

(6) 

Starting from V'= V, we can iterate (6) untill V"= ~ .  At the end we get 

z(ISxl ~<k) 1> (1 -c/k~) ~k 
/ V,O 

Now (4) is easily obtained. 
This completes the proof of part (a). 
To prove (b) it suffices to show that 

,+, t i = lim log ( I~  ~(Sx/> 0) 
A A 

(7) 
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This will be reduced to part (a) of this lemma by using F K G  to establish 
the following lower bound: for all b ~ R 

z(sx ~> 0) z(s~>0) [(z(So >~o)5 ~ ~]~"~ (8) 
A,b 

To prove (8), we introduce a constraint for the spins at the outer boundary 
of A: 

z(sx/> o) o/> z(s~/> o) H z(sx >>- b) 
3A 

As a consequence of the DLR characterization (9) of a Gibbs state, we have 
that the 

rhs = z(S x ~> O) H z(Sx ~> b) 
/ A , { S v ; x e ~ g A }  ~")A 

where 

(H ,/~ z(Sx/> 0 
A, ~S~;.v ~ ~A } 

is the usual finite-volume expectation with respect to d/z ~ ~s,.x~,~A} of a 
function of the spins in A with boundary conditions specified by the set 
{Sx;xEOA}. 

By the convexity of r and the F K G  property, 

z(s.~ >1 o) 
/ A , { S ~ ; x E ? A  } 

is an increasing function of the Sx, x ~ ~?A. Hence, 

The desired lower bound is now obtained by again using the F K G  
inequality for the second factor in the rhs. This ends the proof of the 
lemma. | 

kemma 2: 

(a) lim (ao)hv,~ = 1 
v 

(b) lim @o5 h,A= 1 
A 
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Proof. By convexity in h, 
Lemma 1 to obtain, for any h > 0, 

we can differentiate I~~ both sides of 

1 _  
(a') lira--L-" Z (a.~)~,~= 1 IVIv 

(b') liAm~--~l A~ (0"~),h'A=-I 

By FKG, ( a x ) ~  ,A is an increasing function in hy = h if), ~ A, hy = 0 i fy  ~ A. 
Hence, (a.~)~ 'A is an increasing function in A and lira ( a x ) ~  "A exists and is 
independent of x ~ Z a, A 

1 ~>lim (a0)J~"A' ~> (a~)~ 'A (9) 
A'  

for x E A .  We now sum (9) over x c A  and divide by tAI. Taking the limit 
A T Z a, we get, using (b'), that the rhs is equal to 1, which proves (b). Part 
(a) follows from (b) since by FKG for A c V 

/ -  k h  ~ / \ h , A  
1 >/ \Oo /v , , . ~  "JYOIV, a 

We can therefore first take the limit VT Z d and then A T ZJ. 
This completes the proof of Lemma 2. | 

It follows from Lemma 2 that So >~ K with probability one, for any 
K~< 0. It also holds for K >  0. Indeed, if there was a nonzero probability 
that S< < K for x c  0A one could condition on this event and using the 
DLR equation arrive at a contradiction to Lemma 2. We thus have: 

T h e o r e m  1. 

(a) lim ( z ( S 0 < K ) )  h = 0  V,a 
V 

(b) lim ()~(So<K))~j; " = 0  forany K e R ,  h > 0  
A 

3. A D D I T I O N A L  R E M A R K S  

3.1. The results of Section 2 also apply to the general case where 

~.~ = f(Sx), x e Z  d 

with f any (nonconstant) nondecreasing function. 
Indeed, consider an increasing function with 

f b ( x ) = r  if x>~b 

= - r  if x < - b ,  b > 0  
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Section 2 can then be copied in its entirety (with some zeros replaced by 
_+b, and some ones replaced by r). The general case then follows by FKG. 

3.2. Recently there has been some interest in the case 

~( t )  = i t  2, f ( t ) =  -exp( -c~t ) ,  ~ > 0  

The corresponding system in field theory is known as the Liouville model. 
There have been various efforts to quantize the Liouville theory (see e.g., 
Refs. 11 and 12 and references therein) and to give a well-defined pertur- 
bation theory for it. Our results show that in the context of Gibbs states for 
a lattice system with bounded pure boundary conditions, a nontrivial 
Liouville theory does not exist, i.e., the expected value of So is + co. This, 
however, does not exclude the possibility that a non-translation-invariant 
state can be defined as a limit of finite-volume Gibbs states with boundary 
conditions a v $ - o o  which are volume dependent. 

3.3. We have taken ~ to be convex. This, when q5 is smooth enough, 
e.g., C 2, is sufficient to have the F K G  inequalities for the different measures 
of Section 1. The Brascamp-Lieb inequalities (8) imply that the model 
obtained by choosing qs(t)= c~t2+ v(t), ~ > 0 and v(t) convex, is dominated 
by the harmonic crystal, which is well defined in the infinite-volume limit 
for d>~ 3. This form for q~ then satisfies all our assumptions. However, the 
proofs of Section 2 can be repeated also for other forms of q~ as long as (4) 
holds. More details on the statistical mechanics of anharmonic lattices can 
be found in Ref. 1. 

3.4. In Lemma 1 of Section 2 we have shown that )0 
lira ~ log )~(Sx >~ 0) = 0 

A !AI 

This, together with the application of the F K G  inequalities, has been the 
main ingredient in the proofs. We would like to strengthen (7) to obtain a 
sharper large-deviation behavior for our models. I1~ 

Consider the massless harmonic crystal {ST; x ~ Zd}, ~S 0) = 0. Since 
any sum of jointly Gaussian random variables is again Gaussian, it is easy 
to compute that, for large V and a > 0, 

where the susceptibility 

Z v = ~  ( S o ; S x ) ~ I V I  2/~ as V T Z  a 
v 

822/46/1-2-4 
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The expression (10) gives an upper bound to ( I ]  v 7~(Sx ~> a))o ~ We conjec- 
ture that there exists a lower bound of the same form, i.e., 

z(S~>~a) ~exp(-c,La-2), La=IVJ 
0 

3.5. If we add a mass term -m2ZvS~ to the Hamiltonian H ~ the 
spins will obviously remain bounded in the thermodynamic limit, even 
when the external potential -h Zvf(Sx) has been added. We could then 
study the (h, m) phase diagram. 

For example, in the harmonic case with f = sign we get qualitatively 
the picture shown in Fig. 1. At the critical point (0, 0) an uncountable 
number of pure phases appear, each corresponding to different ways of 
approaching this point. See Ref. 13 for a general discussion of this 
phenomenon. 

3.6. Consider again the measure /~a defined in Section 1. We have 
shown that the presence of a magnetic field h forces the spins {ox} to be 
+ t with probability one, for any h > 0. This implies that fia cannot be a 
Gibbs measure with any decent Hamiltonian, e.g., one in which the interac- 
tion of a single spin with all the other spins is uniformly bounded. 

3.7. In one and two dimensions the unperturbed system typically 
shows too large a fluctuations to define an equilibrium state: ( IS0l)  t + ~ .  
By using the FKG inequalities it is easy to derive that 

(So)~,~ ~> e -~' sinh h (ISo])~ 

(o'o) 1 

Fig. 1. 
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In one dimension the transfer operator method can be used to calculate the 
rate of escape of Sx as some restoring force goes to zero. For example, for 
the massive harmonic crystal in one dimension, one finds that the (even) 
moments  go to infinity as the mass goes to zero at the same rate for the 
unperturbed and the perturbed measure. The interesting case is therefore in 
d =  3, where ( ISoJ)o  is bounded, but ( S o ) ~  ,A ~ oo. 

3.8. So far we have been solely concerned with the case Sx ~ R. While 
more abstract settings of  the problem are possible, let us just consider one 
other case: Sx e Z. The methods of Section 2 can be easily applied to the 
discrete harmonic crystal and the SOS model. The SOS model is defined by 
taking ~b(t) = ]t]. Various estimates (especially Theorem 3.2) of  Ref. 4 can 
be used to simplify the proof of  our Lemma 1. In Ref. 4, information was 
obtained about the rate at which the average height of  the random surface 
goes to infinity if the constraint Sx >~ 0 is imposed on these systems. 
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